Convergence of the discrete dipole approximation. I. Theoretical analysis: erratum

MAXIM A. YURKIN,1,2,* VALERI P. MALTSEV,1,2,3 AND ALFONS G. HOEKSTRA4,5

1Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
2Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
3Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia
4Computational Science Laboratory, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
5ITMO University, Kronverkskiy prospekt 49, 197101 St. Petersburg, Russia

*Corresponding author: yurkin@gmail.com

OCIS codes: (290.5850) Scattering, particles; (260.2110) Electromagnetic optics; (000.4430) Numerical approximation and analysis.

http://dx.doi.org/10.1364/JOSAA.32.002407

The following errors in the analysis of the weighted discretization in [1] resulted from the incorrect interpretation of this formulation of the discrete dipole approximation, originally proposed by Piller [2]. Moreover, this interpretation was not fully expressed in [1], which also cast ambiguity on the definition of the formulation. So we start with explicit statement of a correct interpretation, as corresponding to a numerical scheme,

$$E_i = E_i^{nc} + \sum_{j;i,j} G_{ij}^{(9)} V_j \chi_j E_j + (M_i \chi_i - L_i \chi_i) E_i, \quad (E1)$$

which is a direct cast of Eq. (13) in [2] into the notation of [1] and can be considered an extension of Eq. (10) in the latter.

The first error was in the multiplier of G^i in the second integral in Eq. (92) in [1], which also contained a typographical error (“r” instead of “\bar{r}”). The correct expression is

$$M_i \chi_i E_i = \left(\int_{V_i} d^3r' (G(r_i, r') - \bar{G}(r_i, r')) \chi_p^i \right) E_i$$

$$+ \int_{V_i} d^3r' (\bar{G}(r_i, r') P_i - \bar{G}(r_i, r') \chi_p^i) E_i, \quad (92)$$

where the left-hand side is updated according to the notation of Eq. (E1) to explicitly indicate that it is an approximation to the rigorous $M_i(V_i, r_i)$ given by Eq. (4) in [1]. The corrected Eq. (92) is equivalent to Eq. (9) in [2].

The second error was in the third line of Eq. (96) in [1] in a multiplier of L_i, cf. Eq. (E1). Correcting both errors also results in vanishing of the last two lines of Eq. (96). The final corrected expression is

$$h_i^{sh} = (M(V_p, r_i) - L(\partial V_p, r_i) P_i^p)$$

$$- \left(\int_{V_i} d^3r' (\bar{G}(r_i, r') - \bar{G}(r_i, r')) P_i^p \right)$$

$$= \int_{V_i} d^3r' (\bar{G}(r_i, r') (P(r') - P_i^p)$$

$$+ \int_{V_i} d^3r' (\bar{G}(r_i, r') (P(r') - P_i^p).$$

Also, there was a typographic error in the expression in the beginning of a text line immediately before Eq. (96)—it should read h_i^{sh}.

Then, it follows that the phrase “and the third one is transformed to L_i, the same way as in expression (80)” after Eq. (96) should be removed, and Eq. (97) should read

$$\| h_i^{sh} \| \leq c_{88} d.$$

The whole paragraph after Eq. (97) should be removed, i.e., the original weighted discretization effectively reduces shape errors and requires no further improvements. That is the main conclusion of this erratum.

Finally, Eq. (98) should read

$$\| h_i^{sh} \| \leq \sum_{j \in dV} \left(\sum_{l=1}^{K_{max}} c_{84} n_l l^{-4} + c_{88} d \right) \leq c_{89} N d, \quad (98)$$

i.e., the term c_{87} is removed, but the total order of errors is unchanged.
There was also a sign error in Eq. (6); the correct one is

\[\mathbf{L}(\delta V_{m}, \mathbf{r}) = \frac{-2}{\Delta \omega_{q}} \int d \mathbf{r} \frac{2 \hat{\mathbf{r}}}{\Delta \omega_{q}}, \]

(6)

All other parts of [1], including abstract and conclusions, remain unchanged and are not affected by this erratum.

Acknowledgment. We thank Olli S. Vartia and Ari Seppälä for a discussion that led us to discovery of the described errors.

REFERENCES
