Microbiology and Aquatic Sciences (B211 – B223)

317/B211

Community Flow Cytometry – An Efficient Tool to Monitor Microbial Population Dynamics in a Biogas Reactor

Christin Koch1, Thomas Huebschmann2, Hauke Harms2, Susann Mueller3

1Bioenergy, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04347, Germany, 2Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, D-04318, Germany

The use of biomass as a renewable energy resource is becoming increasingly important in the substitution of fossil fuels. Over 5000 biogas plants of different scales are already installed in Germany and cover already about 1.5% of our total energy demand. An upward trend is found worldwide.

Biogas reactors contain a highly diverse microbial community comprising of Bacteria and Archaea. They are able to degrade complex substrates, ranging from energy crops to organic wastes and distillers grains, to biogas mainly composed of methane and carbon dioxide. Substrate choice, temperature, retention time, pH and the presence of trace metals or noxious compounds are just some factors influencing the community composition and the total reactor performance. So far, most studies only focused on the microbial composition at certain time points using fingerprinting techniques. Differences were found but distinct correlations to total reactor performance could hardly be made.

At the moment only little is known about the behaviour of the biogas microorganisms in dependence on the bioreactor scheme. Flow cytometry offers a tool to follow the dynamics of these complex microbial communities as it was already shown for wastewater systems (Guenthner et al. 2011). The combination with cell sorting of interesting subcommunities (either very stable or very fluctuating) and their molecular characterisation can help to identify the key organisms behind a stable or unstable process performance.

The microbial community in a biogas reactor, run at the German Biomass Research Centre (DBIZ), was investigated over a period of 9 months and first results on the question “How stable is stable – community dynamics in a biogas reactor” will be presented with the aim of understanding the dynamics behind functional stability.

318/B212

Characterization of E. coli Morphology from Light Scattering

Anastasiya Konokhova1,2, Maxim Yurkin1,2, Andrei Gelash2, Valeri Mal'tsev1,2

1Cytometry and Biokinetics Laboratory, Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia, 2Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russia

Characterization of bacteria cells by their static and dynamical characteristics has direct medical applications, e.g., strain identification and antibiotic sensitivity tests. Current implementations of the latter take a lot of time, up to several days. Accurate measurement of changes of morphological characteristics of bacteria over time can significantly decrease this time, making it smaller than one cell cycle. In this work we studied E. Coli, as a common model for rod-shaped bacteria.
Methods: We used scanning flow cytometry, allowing the measurement of angle-resolved intensity light scattering patterns (ILSps) of individual particles, and solution of the inverse light-scattering (ILS) problem. We measured ILSps with the Scanning Flow Cytometer fabricated by CytoNova Ltd. (Novosibirsk, Russia, http://cyto.kinetikcs.nsc.ru/). The solution of ILS problem is based on fitting experimental ILS by theoretical ones, calculated from the modeling $E.~coli$ as a cylinder capped with hemispheres. To accelerate the fit a precalculated database of 600 000 ILSps of individual bacteria is used. This solution allows determination of length, diameter, and refractive index of individual bacterium including errors of these estimates.

Results: Developed method was tested on two strains of $E.~coli$ bacteria. Obtained length and diameter distributions showed a good agreement with both literature data on these strains and microscopic measurements of the same samples.

Conclusions: We present a new approach for accurate and statistically reliable measurement of $E.~coli$ morphology, including length and diameter, using light-scattering flow cytometry. The presented method allows characterization of population of any rod-shaped bacteria cell by their length and diameter distributions. It can be used for determination of dynamic characteristics of bacteria, such as growth rate via length enlargement. This approach can be also used for kinetic studies of cell cycle.

319/B213

Storage Methods for Flow Cytometric Analysis of Bacterial Cells

Michael Jahn, Thomas Hübschmann, Jana Seifert, Hauke Harms, Susann Müller

Helmholtz Centre for Environmental Research, Leipzig, 04317, Germany

Flow cytometry (FCM) is a powerful high-throughput method for evaluating microbial cell samples. The experimental design of studies with cell sampling at different time points often requires the storage of these cells for further analysis. Here, bacterial cells of the standard laboratory species Pseudomonas putida KT2440 and Escherichia coli K12 were fixed and stored using three different methods: sodium-azide fixation, deep-freezing and vacuum-drying.

The cells were stored up to four weeks and the cell’s morphology, scatter characteristics and DNA content were determined at different time points (fresh, 2d, 28d storage) using flow cytometry. Furthermore, the impact of each fixation method and storage time on the proteome profile was evaluated using tandem mass spectrometry (LC-MS-MS) with label free quantification of identified proteins. The effect of sodium-azide fixation/storage on scatter parameters and DNA content of bacterial cells was strong, whereas deep-frozen and vacuum-dried samples showed high similarity with the respective fresh samples. The proteome analysis revealed that each storage method has its characteristic effect on the proteome profile. It is therefore advisable to stick to one particular method during one series of experiments. In conclusion, it could be shown that simple vacuum-drying of bacterial cells is a convenient and effective storage method with similarly small impact on cell morphology as deep-freezing.

320/B214

Microfluidic Cytometer for Measurement of Photosynthetic Characteristics and Lipid Accumulation of Individual Algal Cells

Ralph Jimenez, Richard Erickson

IILA, University of Colorado, Boulder, CO, 80309

Background: Significant attention is focused on the potential use of microalgae-derived lipids for the production of transportation fuels. Research and development is still needed at all stages of the production process, including characterization of algal strains, genetic engineering for higher productivity, and optimization of growth conditions. To this end, we are developing flow-cytometry methods for screening of algal photosynthetic efficiency and lipid content.

Photosynthetic efficiency may be determined from chlorophyll (Chl) fluorescence induction measurements at various intensities that saturates photosystem II (PS2), by closing the reaction centers in $<10^{-4}$ sec, prior to electron transfer. When a rectangular light pulse is applied to each cell, the Chl fluorescence intensity (F_p) is low when the PS2 reaction centers are “open” or capable of oriental to PS2 excitation energy. In the light-saturated state, reaction centers are “closed” and fluorescence yield (F_F) is maximal. The normalized variable fluorescence, $F_v/F_m = (F_m - F_p)/F_m$ represents the quantum yield of excitation trapping by the PS2 reaction center, which is thus the ceiling for the quantum yield of photosynthesis. It is a well-established measure of the solar energy conversion efficiency. Its value ranges from 0 for dead cells to ~0.8 for healthy cells.\(^3\)

We built a microfluidic flow cytometer that measures F_v/F_m forward scatter, and fluorescence from a lipophilic stain (Nile Red; NR) from each cell at a rate of $\sim 10^6$ cells/sec, and used it to characterize nutrient-replete and stressed (nutrient-limited) cultures of the marine diatom Phaeodactyl tricornutum.

Methods: Cells flowing at 1 cm/sec in a fused-silica 2D hydrofocusing microfluidic chip (channel cross-section of 80x100 μm) were illuminated by a sub-μsec pulsed 470 nm LED for exciting Chl and NR, and a 785 nm diode laser (which does not excite Chl or NR), for forward light scattering. An objective lens collected fluorescence, which is split into three channels by dichroic mirrors and detected by separate PMTs for Chl and NR emission. An AC-coupled photodiode detects forward-scattered light. Data collection, analysis of fluorescence transients, and instrument control was performed with home-built circuitry and software.

Results: Cytometry measurements on light-adapted $P.~tricornutum$ cells show significant differences between stressed and unstressed cells, e.g. higher F_v/F_m for stressed (0.763±0.152) vs. stressed (0.459±0.108) cells and higher lipid content (a 77% increase in NR fluorescence). We compared the average value of F_v/F_m for these two samples with bulk measurements of F_v/F_m on the same cultures obtained on a commercial fluorometer. Differences between cytometry and bulk values (unstressed: 0.771±0.003; stressed: 0.370±0.014) are more significant for the stressed cells. The values differ due to the difference in the spectral ranges of the two instruments. The cytometer Chl channel selectively detects fluorescence from PS2, whereas the fluorometer detects both PS1 and PS2. Since PS1 is known to have a lower quantum efficiency, it is to be expected that selective measurements of PS2 will observe higher values of F_v/F_m.

Conclusions: These results are consistent with bulk observations that lipid production in algae is triggered by stressed conditions, and also indicate that the stress results in larger decrease in the quantum yield of PS2 relative to the quantum yield of PS1.

321/B215

Immunodetection of Bacterial Surface Structures by ELISA and Flow Cytometry

Enes Dertlı¹, Donald Mackenzie¹, Melinda Mayer², Nathalie Juge¹, Roy Bongaerts³, Arjan Nárabd²

¹Integrated Biology of GIT, Institute of Food Research, Norwich, NR4 7UA, United Kingdom, ²Integrated Biology of GIT, Institute of Food Research, Norwich, United Kingdom, ³Integrated Biology of GIT, Institute of Food Research, Norwich, NR4 7UA, United Kingdom

Although enzyme-linked immunosassay (ELISA) has been used effectively for antibody titration and quantifying the amounts of specific antigens for decades, flow cytometry (FCM) is becoming the technique of choice for measuring complex antigen-antibody interactions such as those occurring at the bacterial surface. Here we investigated the suitability of these approaches to measure changes at the surface of lactobacilli species using polyclonal antibodies directed against a specific cell surface protein, mucus-binding (MUB) protein from Lactobacillus reuteri ATCC 53160.